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Background 

The Mutation Process 

 
Figure: The Mutation Testing Process 

 
One iteration of the mutation process involves the creation of mutants, executing unit 
tests with mutants in the place of source code, and comparing the results of the mutants 
output to the results of the original (see above Figure).  
 
Mutants are modifications of source code that have been modified by mutation operators. 
The primary concept behind mutation testing is that modifying the source code of a given 
unit (or mutating it) should cause the test that operates on that unit to fail. If a class is 
mutated, it should cause the test cases to fail or produce different results than the original 
(except in the case of a false positive).  
 
If the mutation procedure reveals a true positive, the developer then knows that there is a 
weakness in his or her test code: if changing the code does not produce a test failure, the 
test is missing something. The developer studies how the mutant is different from the 
original, and tries to write a test that will catch this possible error, thus beginning a 
second iteration of the process. In this way, the mutation testing procedure helps the 
developer to create strong test sets.  

http://muclipse.sourceforge.net/img/mutation.jpg�


MuJava 
MuJava, by Yu Seung Ma, Dr. Yong Rae Kwon and Dr. Jeff Offut, is a Mutation System 
for Java files. Using OpenJava, MuJava provides both a user interface and an API for 
performing mutation on existing Java classes. After performing either method-level or 
class-level mutations on specified Java classes, MuJava runs testcases on the original 
classes and again on the mutants and compares the result, thereby implementing the 
Mutation Process described above.  

 
Eclipse 
The Eclipse development environment provides many project management and 
development interfaces that greatly enhance designing and implementing a Java project. 
Specifically, it provides an API which makes performing mutation testing easier. For 
more information, see the next section.  
(MuJava + Eclipse) 

 

MuClipse 
MuClipse is an Eclipse Plugin which provides a bridge between the existing MuJava API 
and the Eclipse Workbench.  
 
MuClipse is a reincarnation of the MuJava tool in the form of an Eclipse plug in. The 
mutation process requires a large amount of meta-language manipulation. Since mutation 
operators act on the source code, the produced mutant has to then be compiled before it 
can be run against the test cases. In addition, mutation testing requires that the mutant's 
source code not be on the Java classpath if you are attempting to "kill" it. Both of these 
steps require very specific Java runtime settings, which are handled by the configurations 
that come with the MuClipse installation.  
 
MuClipse provides advances for the MuJava system in the areas of usability and 
compatibility. The following improvements help explain its motivation:  
 

• Classpath Management  
• Directory Structure Configuration  
• Runtime Configuration  
• Integrated GUI-based Results  

 

http://ise.gmu.edu/%7Eofut/mujava/
http://salmosa.kaist.ac.kr/LAB/MEMBER/yrkwon.html
http://www.ise.gmu.edu/%7Eoffutt/
http://www.csg.is.titech.ac.jp/openjava/
http://www.eclipse.org/
http://www.eclipseplugincentral.com/


Design 

The Top Package 
 

 

http://muclipse.sourceforge.net/docs/uml/toppackage.gif�


Relevant Interclass View 

 

 
 



Use 

Setting up your project 

extendedOJ 
Neither the process of Generating Mutants nor the process of Running Test Cases will 
function correctly if extendedOJ is not on your buildpath. To put it on your buildpath, 
follow these steps:  

1. Download extendedOJ from the link above and save it into a directory within 
your project's root (we recommend /lib).  

2. Open Eclipse and open the workspace with your project in it. Right click on the 
extendedOJ file within Eclipse and go to Build Path -> Add to Build Path. As 
shown below:  

http://muclipse.sourceforge.net/extendedOJ.jar


 
Figure 1: Adding extendedOJ to the buildpath 

3. Your project should rebuild.  

Folder Structure 
The following requirements for the directory of your structure must also be implemented 
to use MuJava.  

• You will need a folder within your project's root directory called result. No 
other name will work with this version of MuClipse.  

• Your source code and unit tests must be in two seperate source folders.  
• Your unit tests must compile to their source folder. To set this up, right click your 

source folder containing unit tests, go to Build Path -> Configure output folder, 
select the radio button "Specific output folder" and type in the same path as the 
source folder.  



jUnit 
IMPORTANT: If you are going to be running jUnit test cases to perform your mutation 
testing, their setUp() method needs to have the declaration public (its default is 
protected).  

Generating Mutants 
To generate mutants you will use the "MuClipse: Mutants" runtime configuration. Follow 
these steps to open and prepare your configuration:  

• IMPORTANT: Click on the project you are working with.  
• Go to the arrow to the left of run and select "Run ..." as shown below.  

 
Figure 2: Opening the runtime configuration 

• The Eclipse runtime configuration dialog box will appear. Select "MuClipse: 
Mutants" and click "New".  

The Directories Tab 
The following is an explanation of the fields on the "Directories" tab as shown below.  

 
Figure 3: Directories 



• Project: The selected project.  
• Mutants Output: Where the mutation results will go--should almost always be 

"result"  
• Classes Folder: The root of where your compiled Java binaries are (usually 

"bin")  
• Testset Folder: The root of where your test case source files are  
• Source Folder: The root of where your source code files are  

•  After you have correctly pointed all the folder fields to the correct locations, select a 
class (or many) to mutate.  
•  You are not done: see the mutants tab for more information.  

The Mutants Tab 

 
Figure 4: Mutants 

Select the mutation operators you would like to use. We recommend not using all of 
them, as the execution time for the running test cases phase increases exponentially for 
each mutation operator you use. For more information on what each operator does, see 
the MuJava homepage.  

Execution 
MuClipse will now create the mutants you have specified. Some operators will not 
produce any mutants. If they do not, try different operators. The console will show 
"Mutants have been created!" when the process is complete. If you would like to see your 
mutants without any test case information, proceed to the section "Viewing Results" 
below.  

Running Test Cases 
To generate mutants you will use the "MuClipse: Tests" runtime configuration. Follow 
these steps to open and prepare your configuration:  

http://ise.gmu.edu/%7Eofut/mujava/


• IMPORTANT: Click on the project you are working with.  
• Go to the arrow to the left of run and select "Run ..." as shown below.  

 
Figure 5: Opening the runtime configuration 

• The Eclipse runtime configuration dialog box will appear. Select "MuClipse: 
Tests" and click "New".  

The Directories Tab 
The following is an explanation of the fields on the "Directories" tab as shown below.  

 
Figure 6: Directories 

• Project: The selected project.  
• Mutants Output: Where the mutation results will go--should almost always be 

"result"  
• Classes Folder: The root of where your compiled Java binaries are (usually 

"bin")  



• Testset Folder: The root of where your test case source files are  
• Source Folder: The root of where your source code files are  

•  After you have correctly pointed all the folder fields to the correct locations, select a 
unit test class to run.  
•  Then select the class (or classes) which are targeted by this test case.  
•  You are not done: see the mutants tab for more information.  

The Testing Options Tab 

 
Figure 7: Testing Options 

The testing options tab allows you to specify the following options:  

• The Timeout Period: This is the amount of time each testcase is given to run. If a 
testcase causes an infinite loop, MuClipse kills that thread and counts that as a 
failure. If a lot of testcases are failing, increase this value. If execution is taking 
too long, decrease this value.  

• Test Traditional/Class-Level Mutants: These are two different types of operators. 
Do not test an operator type which you did not create mutants for or which did not 
generate any mutants.  

Execution 
When you have finished specifying your options, click "Run." The console window will 
display output indicating the test results. The last thing in the output window should be 
your mutation score and killed/live numbers. When execution is complete, the console 
will display these statistics and the string "Writing to file..."  

Viewing Results 

• To view your mutants, right click on the result folder and go to MuClipse -> 
View Mutants and Results.  

• Each root node in the view of the tree that will appear is a class, underneath which 
are the Class-Level and Method-Level mutant nodes. The Method-Level mutants 
are seperated by method name.  

• The node names correspond to the name of the mutation operator and this 
instance of its mutation. If you have run test results, the name will show "killed" 
or "alive" depending on its status.  

• To see how a particular mutant compares to its original, double click one of the 
nodes.  



MuClipse Requirements Specification 
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1. Introduction 
 
There are already several open source Java mutation (JMutation) systems. MuJava and Jester are 
two examples of such tools. MuJava, in particular, provides both class-level and method-level 
mutation operators and provides a “mutant score” which shows the percentage of total mutants 
were killed by a user’s test set. 
 
Jester and MuJava both have a high initial setup overhead and a configuration overhead for each 
project with which they are to be used. The functionality for performing Mutation Testing already 
exist in the open source MuJava libraries and therefore can be cleanly transformed into an Eclipse 
Application. MuClipse, as its name suggests, is a JMutation system which will function as an 
Eclipse plugin. This unique constraint will provide the system with direct access to the directory 
structure and environment variables, which it can pass on to the developer as an easy-to-setup 
Eclipse runtime configuration. 
 
The requirements below are categorized by Functional and Non-functional but also by subcategory. 
They are prioritized using the following system: 
 
# Declaration of Meaning 
1 If this requirement is not implemented in the application, the application is not complete. 
2 This requirement is important, but the application can be usable without it. 
3 This requirement is not important, but would improve upon the usability or appearance of 

the application. 
 
 



2. Functional Requirements 
 
2.1 Usability. 
 

2.1.1 
  The system shall allow the developer to easily see which mutants were killed, which 

remain alive and the mutation score for the last execution of test cases. 
 
  Description: The results are the main point of performing mutation testing—if the 

developer is not able to see which mutants are not caught by the existing test set, then there 
is no way to improve the test set to kill the additional mutants. 

 
  Origin: The MuJava Tool. 
 
  Priority: 1 
 

2.1.2 
  The system shall allow the developer to specify the location where mutants 

generated are to be placed, and where original source code, test cases and compiled Java 
classes are located. 

 
  Description: The original tool requires a very specific directory structure which it 

uses to look for mutants, source code, test cases and compiled Java classes (binary objects). 
The system should be able to take input before running which could override this structure 
if the developer so desires. 

 
  Origin: Ben Smith. 
 
  Priority: 1 
 
2.2 Generating Mutants. 
 
 2.2.1 
  The system shall be able to generate, store and compile mutated classes. 
 
  Description: Given a set of mutation operators, the system shall perform the 

mutations on the various source code selections and save the results into a designated 
location. After it has finished, the system will compile these classes for later use. 

 
  Origin: The MuJava Tool. 
 
  Priority: 1 

 
 2.2.2 
  The system shall be able to perform the mutation operations the developer selects. 
 



  Description: The developer will be presented with a list of mutants that the MuJava 
libraries distribute. From the graphical interface, the developer can specify which mutation 
operators should be used with this pass of generation. 

 
  Origin: The MuJava Tool. 
 
  Priority: 3 
 
 2.2.3 
  The system shall mutate the source code the developer chooses. 
 
  Description: Since the mutation process can be quite time- and processor-intensive, 

the developer may only want to expose weaknesses for or focus on a single class. The 
system shall allow this option. 

 
  Origin: The MuJava Tool. 
 
  Priority: 3 
 
2.3 Test Sets. 
 
 2.3.1 
  The system shall run the set of tests the developer specifies, tabulate the results of 

those tests and compare them with the results of each mutant. 
 
  Description: The developer will be presented with a list of choices for tests which 

can be run against the mutants that have been generated. 
 
  Origin: The MuJava Tool. 
 
  Priority: 2 

 
2.3.2 

  The system shall be able to run tests selectively on a declared type of mutants. 
 
  Description: The developer will be presented with a class of mutant (class-level, 

method-level or both) choice on which to run test cases. 
 
  Origin: The MuJava Tool. 
 
  Priority: 3 
 

2.3.3 
  The system shall run both MuJava tests and jUnit TestCases. 
 



  Description: These two test types (see glossary for more information) have different 
return types and are in fact different Object types. The system must be able to collate the 
test results for both. 

 
  Origin: Laurie Williams 
 
  Priority: 3 

 
3. Nonfunctional Requirements 
 

3.1.1 
  The system shall display both a textual output of its actions and an overall progress 

indication during its execution. 
 
  Description: Generating mutants and collating results for the various test cases takes 

a long time in mutation testing. The developer needs a progress indication more than the 
textual output provided by the tool. These textual indications do not give an endpoint that is 
clear enough.  

 
  Origin: Ben Smith. 
 
  Priority: 3 
 
4. Constraints 
 

4.1 
  The process of generating mutants and running test cases on those mutants shall be 

accessible in the form of an Eclipse Runtime Configuration. 
 

4.2 
  The killed and live mutant results shall be available in the form of an Eclipse View. 
 
4. Requirements Traceability Matrix 
 

-> 2.1.1 2.1.2 2.2.1 2.2.2 2.2.3 2.3.1 2.3.2 2.3.3 
2.1.1   X   X   
2.1.2         
2.2.1         
2.2.2   X      
2.2.3   X      
2.3.1   X      
2.3.2      X   

Requirement 

2.3.3      X   
 
 



5. Development and Target Platforms 
 
The MuClipse tool shall be developed to be a plugin which will be available for Eclipse v3.1.x, 
which is a multi-platform Integrated Development Environment. 
 
6. Glossary 

• class-level: a newer type of mutation which modifies method and class keywords to 
change scope, persistence and other object-oriented attributes 

• Eclipse runtime configuration: a saved template of a runtime configuration for 
multiple repeated runs. 

• jUnit TestCases: test objects which are of type junit.framework.TestCase. The 
structure is to have all methods with no return type and call static methods from the 
superclass to evaluate your results. If the results do not hold true, an exception of 
type junit.framework.AssertionFailedError is thrown. 

• method-level: see traditional. 
• MuJava tests: test objects created for use with the original MuJava libraries. The 

structure is to have a simple Java object with varying methods (which have various 
return types) starting with the word “test”. 

• mutant: a copy of the source code under test after it has undergone modification 
(mutations) by the mutation operators 

o live: the mutant did not cause its corresponding test case to fail 
o killed: the mutant caused its corresponding test case to fail 

• mutation: the process of modifying segments of the original source 
• mutation operator: the specifications for how a given class of mutation is going to be 

performed—implemented using a Reader and Writer for this operator 
• mutation score: a percentage, given by (mutants killed) / (total mutants for this run), 

which acts as a metric for how effective the unit test cases are at detecting errors in 
the source code. 

• mutation system: a program or tool which allows for both generating mutants and 
running a set of test cases on those mutants to compare with the original results 

• runtime configuration: a set of objects on the Java classpath, parameters passed to 
the Java runtime environment, and other environment settings specified to allow a 
desired program (or tool) to run correctly 

• traditional: the original mutation type, which consists of making changes to only 
source code which exists within a method body. 

• test set: a group of Java classes which execute tests on their corresponding source 
classes 

 



7. Document Revision History 
 

Version 0.4 
Name(s) Ben Smith 
Date 10/19/2006 
Change Description Dropped requirement of single-run execution 

 
 

Version 0.3 
Name(s) Ben Smith 
Date 10/19/2006 
Change Description Dropped requirement of single-run execution 

 
 
Version 0.2 
Name(s) Ben Smith 
Date 10/19/2006 
Change Description Moved many non-functional requirements into the functional 

section. 
Dropped implementation specifications that were not 
requirements. 
Added constraints section. 

 
 
Version 0.1 
Name(s) Ben Smith 
Date 10/6/2006 
Change Description Initial Draft 
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